Меню

Llc long life sleeve подшипник

Llc long life sleeve подшипник

Sleeve Bearing — Подшипник скольжения

Время работы заявлено: до 35 000 час
Время работы реально: до 17 000 час

Это самый простой тип подшипников. Состоит из втулки, покрытой антифрикционным материалом, внутри которой вращается вал.

Изначально — низкий, однако при износе таких подшипников кулеры начинают сильно шуметь из-за вибрации. Относительно невысокий и сильно зависит от эксплуатационной температуры и вибрационных нагрузок. Заявляется ресурс до 35.000 часов, но он достижим только в идеальных условиях. На практике такие подшипники служат в два-три раза меньше. Самый дешёвый тип подшипника.

Rifle bearing, Z-Axis bearing — Подшипник скольжения c винтовой нарезкой

Время работы заявлено: до 70 000 час
Время работы реально: до 35 000 час

Подшипник скольжения с нарезами на втулке и оси, что обеспечивает рециркуляцию смазывающей жидкости.

Низкий. Ресурс значительно выше чем у обычных подшипников скольжения и приближается к FDB-подшипникам. Немного выше, чем у обычных подшипников скольжения, но ниже, чем у FDB-подшипников.

Fluid Dynamic Bearing (FDB bearing) — Гидродинамический подшипник скольжения

Время работы заявлено: до 80 000 час
Время работы реально: до 40 000 час

Усовершенствованный подшипник скольжения, в котором вращение вала происходит в слое жидкости, постоянно удерживающейся внутри втулки за счёт создающейся при работе разницы давлений.

Очень низкий. Существенно выше, чем у подшипников скольжения, заявляются цифры до 80 тысяч часов. Однако в реальных эксплуатационных условиях эту цифры также стоит уменьшить минимум вдвое. Выше, чем у обычных подшипников скольжения, но ниже, чем у подшипников качения.

VAPO bearing — Подшипник скольжения с магнитным центрированием, левитацией

Время работы заявлено: от 160 000 час и выше
Время работы реально: от 160 000 час и выше

Практически, бесконтактный механизм, основанный на принципе магнитной левитации..

Самый низкий (До 80% тише, чем остальные) обладает большей надежностью, лучше переносит использование в агрессивных средах

Ball Bearing — Подшипник качения

Время работы от 60 000 час до 90 000 час

Из всех типов подшипников качения в кулерах применяются только радиальные шарикоподшипники, состоящие из двух колец, тел качения (собственно шариков) и сепаратора.

Формально — выше чем у подшипников скольжения, однако из-за большего ресурса в равных условиях длительной эксплуатации кулеры на таких подшипниках не оказываются более шумными, чем аналоги на подшипниках скольжения, более подверженные износу. Заявленный ресурс может быть от 59 до 90 тысяч часов, в реальных условиях эксплуатации такие подшипники существенно долговечнее, чем подшипники скольжения. Выше, чем у подшипников скольжения.

Ceramic Bearing — Керамический подшипник качения

Время работы заявлено: до 160 000 час
Время работы реально: до 160 000 час

Подшипник качения с использованием керамических материалов.

Низкий. Заявленный ресурс может быть до 160 тысяч часов при достаточно высоких эксплуатационных температурах, фактически, в настоящее время это самые долговечные подшипники, применяемые в кулерах. Самая высокая у подшипников скольжения.

SSO Bearing — Подшипник масляного давления

Время работы заявлено: до 160 000 час
Время работы реально: до 160 000 час

Усовершенствованный гидродинамический подшипник. Отличается увеличенным слоем жидкости (смазки) Для уменьшения износа вал центрируется установленным в основание постоянным магнитом.

Читайте также:  Как правильно поставить подшипники в вилку велосипеда
Самый низкий. Заявленный ресурс может быть до 160 тысяч часов при достаточно высоких эксплуатационных температурах, фактически, в настоящее время это самые долговечные подшипники, применяемые в кулерах. Выше чем у подшипников качения, но ниже чем у керамических подшипников качения

LDP Bearing — Самосмазывающийся подшипник скольжения

Время работы заявлено: до 160 000 час
Время работы реально: до 160 000 час

Усовершенствованный подшипник скольжения. Имеет защиту от пыли, соответствующую IP6X, и специальный слот для восстановленного масла, которые увеличивают срок службы вентилятора.

В исправном состоянии — низкий. Заявленный ресурс может быть до 160 тысяч часов при достаточно высоких эксплуатационных температурах, фактически, в настоящее время это самые долговечные подшипники, применяемые в кулерах. Выше чем у подшипников скольжения (sleeve bearing), ниже чем у гидродинамических

Подшипник с полиоксиметиленом (POM Bearing)

Время работы заявлено: до 160 000 час

Усовершенствованный подшипник скольжения. Для увеличения срока службы вал покрыт полиоксиметиле́ном, обладающим пониженным коэффициентом трения скольжения.

В исправном состоянии — низкий. Заявленный ресурс может быть до 160 тысяч часов Выше чем у подшипников скольжения (sleeve bearing), ниже чем у гидродинамических

OmniCOOL Bearing — Подшипник omniCOOL

Время работы заявлено:
до 200 000 час при 20°C
до 110 000 час при 70°C

Компания CUI разработала новый тип вентилятора, который устраняет разрыв между традиционными конструкциями на основе шарикоподшипников и подшипников скольжения. Новая конструкция подшипника, известная как система omniCOOL, использует магнитную подвеску для балансировки ротора в сочетании с усовершенствованным подшипником скольжения.

Ротор в системе omniCOOL работает как волчок, который никогда не падает и может работать под любым углом.

Магнитная структура уравновешивает ротор независимо от угла, под которым работает вентилятор. Следовательно, внутренняя часть подшипника не должна выдерживать вес ротора — это выполняют магнитный поток и опорная крышка.

Система omniCOOL уменьшает или устраняет многие недостатки традиционных втулок или шариковых подшипников. Например, магнитная структура, активно уравновешивающая ротор, сводит к минимуму проблемы наклона и колебания, характерные для стандартных подшипников скольжения. И поскольку вал не опирается на внутреннюю часть подшипника, трение между ними значительно ниже, чем у традиционного подшипника скольжения.

Втулка, используемая в системе omniCOOL, специально закалена, чтобы противостоять истиранию и нагреву. Это позволяет работать при температуре до 90°C, в то время как традиционные подшипники скольжения обычно могут выдерживать температуру только до 70°C.

Упрочненная втулка и уменьшенное истирание (благодаря магнитной структуре, уравновешивающей ротор) также значительно увеличивают срок службы подшипника — результаты испытаний показали, что система omniCOOL работает в три раза дольше, чем стандартный подшипник скольжения при 70°C, и в 5,5 раз дольше при 20°C.

Низкий. Ресурс значительно выше чем у обычных подшипников скольжения.

ВЫВОД: Как показала практика, несмотря на широчайшее разнообразие существующих типов подшипников, наибольший акустически комфорт предоставляют гидродинамические подшипники и их развитие. Лишь они обеспечивают одинаковый уровень шума весь срок эксплуатации.

Источник

Типы подшипников в корпусных вентиляторах

Содержание

Содержание

Активное охлаждение компонентов компьютера уже давно ни для кого не является новостью. Пользователи так сильно увлечены воздушными потоками, давлением внутри корпуса, что забывают о том, что не каждый вентилятор подходит на отведенную ему роль в полной мере. И не последнее значение в этом играет тип подшипника вентилятора.

Читайте также:  Как ставить подшипники рулевой колонки велосипеда

Немного истории

Изначально подшипники выглядели совсем не так как сейчас. Как следует из названия, это то, во что упирается шип.

Простая конструкция за счет малого диаметра оси создает большое отношение плеч рычага и даже большой коэффициент трения не создает существенного противодействия вращению. А что бы износ был как можно меньше, в качестве подшипника используется более твердый материал. Сегодня такая конструкция встречается в механических часах.

Так или иначе прогресс взял свое, и современные конструкции уже более совершенны.

Подшипник скольжения

Традиционный спутник бюджетных вентиляторов. Внешне максимально простая конструкция, состоящая из латунной втулки и стального вала, но в своей работе не так уж и проста.

Небольшая разница в диаметре вала и втулки заполнена маслом. При вращении вала силы трения между валом и маслом нагнетают масло в место соприкосновения вала и втулки, создавая давление масляного клина. Если это давление будет достаточно большим, оно предотвращает контакт вала и втулки.

h — толщина слоя смазки, ω — угловая скорость вращения вала, d — диаметр вала, P — величина нагрузки, s —средний зазор, e — эксцентриситет

Как видно из рисунка слабым местом этого подшипника является то, что давление прилагается только с одной стороны вала — это не способствует гашению вибраций, а даже наоборот вызывает их при малой величине нагрузки.

По мере работы нагрев делает масло более жидким, что уменьшает давление масляного клина. Также нагрев способствует ускорению испарения масла и в итоге вал с втулкой начинает контактировать. При повышении окружающей температуры на 20 градусов срок эксплуатации такого подшипника снижается в 3 раза. То есть, для вентилятора с обычным подшипником скольжения наиболее удачным будет место с низкой температурой. А для уменьшения, микровибраций, которые изнашивают втулку и в итоге становятся слышимыми вибрациями нужна нагрузка на вал. Такие условия в сборке башенного типа актуальны только на фронтальной панели.

По мере усовершенствования этого типа подшипника появились самосмазывающиеся вариации, а также с винтовой нарезкой. Их особенностью является большее количество масла, доступное для смазки, а также некоторое подобие насоса за счет винтовых конструкций, обеспечивающее циркуляцию масла в любом положении.

Использование полиоксиметилена (POM) также идет на пользу. Этот материал частенько используют в редукторах дешевого электроинструмента. Но в данном случае это замена мягкой втулки из медного сплава, которая в редукторе рассыпалась бы моментально. Полимерный материал уменьшает коэффициент сухого трения и появление частиц с абразивными свойствами, которые в свою очередь ускоряют износ.

Все эти ухищрения не устраняют полностью недостатки конструкции подшипника скольжения, хотя и позволяют ему проработать несколько лет даже в неудачном положении. Наиболее живучим будет вентилятор, имеющий защиту IP6X. В нем применяется герметизирующая втулка для защиты от пыли, которая также мешает испаряться и вытекать маслу.

Гидродинамический подшипник

Считается вечным, ведь пока в нем есть масло, вал и втулка не могут соприкоснуться. Это обеспечивается особым профилем либо втулки, либо вала, обеспечивающих повышенное давление в некоторых участках. Обычно это встречные косые углубления на втулке. Их проще выполнить в мягком металле, не нарушая балансировки вала. Но на практике может встретиться все что угодно, щедро сдобренное маркетинговыми названиями.

Читайте также:  Подшипник ступицы передней пежо 206 седан

Как видно по результатам моделирования, повышенное давление действует на вал со всех сторон. За счет этого вал меньше вибрирует и практически исключается контакт со втулкой. Но главная проблема подшипников скольжения — высыхание масла тут тоже присутствует. И добавляется еще одна: в лежачем положении масло, по мере высыхания, либо скопится в масляной камере (при этом некоторые конструкции исключают достаточное поступление масла за счет капиллярного эффекта), либо постепенно будет покидать подшипник через недостаточно герметичное уплотнение вала.

И ко всему этому еще добавляется очень большая восприимчивость к работе на низких оборотах. Давление масла зависит от оборотов, и если они будут недостаточны, то гидродинамический подшипник превращается в обычный подшипник скольжения. Недаром производители зачастую ограничивают нижнюю частоту вращения вентиляторов с гидродинамическими подшипниками в 600 оборотов в минуту. Но даже с таким ограничением пользователи отмечают появление посторонних звуков.

Подшипники с магнитным центрированием

Большая часть вентиляторов пользуется магнитной левитацией за счет притяжения постоянного магнита ротора и полюсов статора. Убедиться в наличии магнитной левитации просто — достаточно вдоль оси потолкать крыльчатку. Она свободно перемещается на некоторое расстояние и тут же возвращается. В вентиляторах с магнитным центрированием добавляют еще один магнит, придающий больше жесткости, и упор оси вала, который может быть выполнен как из пластика, так и из гидродинамического подшипника.

Дополнительная жесткость уменьшает вибрацию вала на низких оборотах и позволяет гидродинамическому подшипнику работать на любых оборотах и в любом положении.

Подшипник качения

Как можно понять из названия, принцип его работы основан на качении. Чем тверже материал, меньше шероховатость поверхности и точнее детали, тем дольше прослужит такой подшипник. Чем ниже рабочие обороты в подшипнике качения, тем дольше он проработает (даже в перерасчете на суммарное количество оборотов).

Ориентация в пространстве на работе никак не сказывается, поэтому вентиляторы на его основе можно применять в любой части сборки.

Но такой подшипник шумный, что делает его применение на низких оборотах бессмысленной затеей, и с течением времени создаваемый шум растет постепенно. Наиболее долговечная разновидность выполняется из керамики.

А самую тихую модификацию без сепаратора, в которой шарики не создают шума постукиванием друг о друга, скорее всего в компьютерных вентиляторах мы никогда и не увидим.

Заключение

Подшипники компьютерных вентиляторов имеют свои слабые и сильные стороны, учитывая которые можно избежать ускоренной поломки и бессмысленных трат.

Обычный подшипник скольжения дешевый, быстро выходит из строя, но на фронтальной панели может прослужить вполне долго.

Самосмазывающиеся подшипники, особенно с применением пластика (POM) и класса защиты IP6Х могут работать в любой части сборки, не уступая в долговечности другим типам.

Гидродинамический подшипник в самом простом исполнении даже капризнее чем обычный подшипник скольжения. Оптимальным будет использование на оборотах, близких к максимальным, если избегать «лежачего» положения.

Магнитное центрирование позволяет гидродинамическим подшипникам работать в любом положении и оборотах.

Подшипник качения самый надежный, но шумный. Зачастую заранее предупреждает о своей грядущей поломке повышенным шумом, что позволяет избежать внезапной остановки.

Источник

Adblock
detector